1. Tujuan [kembali]
- Membuat Rangkaian Incubator Bayi dengan Proteus
- Mengetahui cara kerja Sensor Suhu LM35, Sound Sensor, Sensor LDR, dan Vibration Sensor
- Dapat membuat rangkaian incubator menggunakan Sensor Suhu LM35, Sound Sensor, Sensor LDR, dan Vibration Sensor
Alat
Instrument
1. DC Voltmeter
Generator Daya
1. Baterai

- Input voltage: ac 100~240v / dc 10~30v
- Output voltage: dc 1~35v
- Max. Input current: dc 14a
- Charging current: 0.1~10a
- Discharging current: 0.1~1.0a
- Balance current: 1.5a/cell max
- Max. Discharging power: 15w
- Max. Charging power: ac 100w / dc 250w
- Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
- Ukuran: 126x115x49mm
- Berat: 460gr
Bahan
.jpeg)
Spesifikasi:
Untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Oleh karena itu, Dioda sering dipergunakan sebagai penyearah dalam Rangkaian Elektronika. Dioda pada umumnya mempunyai 2 Elektroda (terminal) yaitu Anoda (+) dan Katoda (-) dan memiliki prinsip kerja yang berdasarkan teknologi pertemuan p-n semikonduktor yaitu dapat mengalirkan arus dari sisi tipe-p (Anoda) menuju ke sisi tipe-n (Katoda) tetapi tidak dapat mengalirkan arus ke arah sebaliknya.
3. Transistor
Transistor merupakan salah satu Komponen Elektronika Aktif yang paling sering digunakan dalam rangkaian Elektronika, baik rangkaian Elektronika yang paling sederhana maupun rangkaian Elektronika yang rumit dan kompleks. Transistor pada umumnya terbuat dari bahan semikonduktor seperti Germanium, Silikon, dan Gallium Arsenide.
Spesifikasi:
4. OP -AMP
Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.
3. Sensor Sound
Sensor Suara adalah sensor yang memiliki cara kerja merubah besaran suara menjadi besaran listrik. Pada dasarnya prinsip kerja pada alat ini hampir mirip dengan cara kerja sensor sentuh pada perangkat seperti telepon genggam, laptop, dan notebook. Sensor ini bekerja berdasarkan besar kecilnya kekuatan gelombang suara yang mengenai membran sensor yang menyebabkan bergeraknya membran sensor yang memiliki kumparan kecil dibalik membran tersebut naik dan turun. Kecepatan gerak kumparan tersebut menentukan kuat lemahnya gelombang listrik yang dihasilkannya.
- Working voltage: DC 3.3-5V
- Dimensions: 45 x 17 x 9 mm
- Signal output indication
- Single channel signal output
- With the retaining bolt hole, convenient installation
- Outputs low level and the signal light when there is sound
5. Sensor Suhu LM35


- Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.
- Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu25ºC
- Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
- Bekerja pada tegangan 4 sampai 30 volt. Memiliki arus rendah yaitu kurang dari 60 µA.
- Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
- Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA. Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.

Pinout:

Spesifikasi :


- Tegangan maksimum (DC): 150V
- Konsumsi arus maksimum: 100mW
- Tingkatan Resistansi/Tahanan : 10Ω sampai 4.100KΩ
- Puncak spektral: 540nm (ukuran gelombang cahaya)
- Waktu Respon Sensor : 20ms – 30ms Suhu operasi: -30° Celsius – 70° Celcius
Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.
LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N.
spesifikasi:

4. Buzzer
Potensiometer (POT) adalah salah satu jenis Resistor yang Nilai Resistansinya dapat diatur sesuai dengan kebutuhan Rangkaian Elektronika ataupun kebutuhan pemakainya. Potensiometer merupakan Keluarga Resistor yang tergolong dalam Kategori Variable Resistor. Secara struktur, Potensiometer terdiri dari 3 kaki Terminal dengan sebuah shaft atau tuas yang berfungsi sebagai pengaturnya. Gambar dibawah ini menunjukan Struktur Internal Potensiometer beserta bentuk dan Simbolnya.

Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika. Sebagaimana fungsi resistor yang sesuai namanya bersifat resistif dan termasuk salah satu komponen elektronika dalam kategori komponen pasif. Satuan atau nilai resistansi suatu resistor di sebut Ohm dan dilambangkan dengan simbol Omega (Ω). Sesuai hukum Ohm bahwa resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Selain nilai resistansinya (Ohm) resistor juga memiliki nilai yang lain seperti nilai toleransi dan kapasitas daya yang mampu dilewatkannya. Semua nilai yang berkaitan dengan resistor tersebut penting untuk diketahui dalam perancangan suatu rangkaian elektronika oleh karena itu pabrikan resistor selalu mencantumkan dalam kemasan resistor tersebut.
Simbol resistor sebagai berikut :
Resistor dalam suatu teori dan penulisan formula yang berhubungan dengan resistor disimbolkan dengan huruf “R”. Kemudian pada desain skema elektronika resistor tetap disimbolkan dengan huruf “R”, resistor variabel disimbolkan dengan huruf “VR” dan untuk resistorjenis potensiometer ada yang disimbolkan dengan huruf “VR” dan “POT”.
Kapasitas Daya Resistor
Kapasitas daya pada resistor merupakan nilai daya maksimum yang mampu dilewatkan oleh resistor tersebut. Nilai kapasitas daya resistor ini dapat dikenali dari ukuran fisik resistor dan tulisan kapasitas daya dalamsatuan Watt untuk resistor dengan kemasan fisik besar. Menentukan kapasitas daya resistor ini penting dilakukan untuk menghindari resistor rusak karena terjadi kelebihan daya yang mengalir sehingga resistor terbakar dan sebagai bentuk efisiensi biaya dan tempat dalam pembuatan rangkaian elektronika.
Nilai Toleransi Resistor
Toleransi resistor merupakan perubahan nilai resistansi dari nilai yang tercantum pada badan resistor yang masih diperbolehkan dan dinyatakan resistor dalam kondisi baik. Toleransi resistor merupakan salah satu perubahan karakteristik resistor yang terjadi akibat operasional resistor tersebut. Nilai torleransi resistor ini ada beberapa macam yaitu resistor dengan toleransi kerusakan 1% (resistor 1%), resistor dengan toleransi kesalahan 2% (resistor2%), resistor dengan toleransi kesalahan 5% (resistor 5%) dan resistor dengan toleransi 10% (resistor 10%).
Nilai toleransi resistor ini selalu dicantumkan di kemasan resistor dengan kode warna maupun kode huruf. Sebagai contoh resistor dengan toleransi 5% maka dituliskan dengan kode warna pada cincin ke 4 warna emas atau dengan kode huruf J pada resistor dengan fisik kemasan besar. Resistor yang banyak dijual dipasaran pada umumnya resistor 5% dan resistor 1%.
Jenis-Jenis Resistor
Berdasarkan jenis dan bahan yang digunakan untuk membuat resistor dibedakan menjadi resistor kawat, resistor arang dan resistor oksida logam atau resistor metal film.
Resistor Kawat (Wirewound Resistor)
Resistor kawat atau wirewound resistor merupakan resistor yang dibuat dengan bahat kawat yang dililitkan. Sehingga nilai resistansiresistor ditentukan dari panjangnya kawat yang dililitkan. Resistor jenis ini pada umumnya dibuat dengan kapasitas daya yang besar.
Resistor Arang (Carbon Resistor)
Resistor arang atau resistor karbon merupakan resistor yang dibuat dengan bahan utama batang arang atau karbon. Resistor karbon ini merupakan resistor yang banyak digunakan dan banyak diperjual belikan. Dipasaran resistor jenis ini dapat kita jumpai dengan kapasitas daya 1/16 Watt, 1/8 Watt, 1/4 Watt, 1/2 Watt, 1 Watt, 2 Watt dan 3 Watt.
Resistor Oksida Logam (Metal Film Resistor)
Resistor oksida logam atau lebih dikenal dengan nama resistor metal film merupakan resistor yang dibuah dengan bahan utama oksida logam yang memiliki karakteristik lebih baik. Resistor metal film ini dapat ditemui dengan nilai tolerasni 1% dan 2%. Bentuk fisik resistor metal film ini mirip denganresistor kabon hanya beda warna dan jumlah cicin warna yang digunakan dalam penilaian resistor tersebut. Sama seperti resistorkarbon, resistor metal film ini juga diproduksi dalam beberapa kapasitas daya yaitu 1/8 Watt, 1/4 Watt, 1/2 Watt. Resistor metal film ini banyak digunakan untuk keperluan pengukuran, perangkat industri dan perangkat militer.
Kemudian berdasarkan nilai resistansinya resistor dibedakan menjadi 2 jenis yaitu resistor tetap (Fixed Resistor) dan resistor tidak tetap (Variable Resistor)
Resistor Tetap(Fixed Resistor)
Resistor tetap merupakan resistor yang nilai resistansinya tidap dapat diubah atau tetap. Resistor jenis ini biasa digunakan dalam rangkaian elektronika sebagai pembatas arus dalam suatu rangkaian elektronika. Resistor tetap dapat kita temui dalam beberpa jenis, seperti :
- Metal Film Resistor
- Metal Oxide Resistor
- Carbon Film Resistor
- Ceramic Encased Wirewound
- Economy Wirewound
- Zero Ohm Jumper Wire
- S I P Resistor Network
Resistor Tidak Tetap (Variable Resistor)
Resistor tidak tetap atau variable resistor terdiridari 2 tipe yaitu :
- Pontensiometer, tipe variable resistor yang dapat diatur nilai resistansinya secara langsung karena telah dilengkapi dengan tuas kontrol. Potensiometer terdiri dari 2 jenis yaitu Potensiometer Linier dan Potensiometer Logaritmis
- Trimer Potensiometer, yaitu tipe variable resistor yang membutuhkan alat bantu (obeng) dalam mengatur nilai resistansinya. Pada umumnya resistor jenis ini disebut dengan istilah “Trimer Potensiometer atau VR”
- Thermistor, yaitu tipe resistor variable yangnilairesistansinya akan berubah mengikuti suhu disekitar resistor. Thermistor terdiri dari 2 jenis yaitu NTC dan PTC. Untuk lebih detilnya thermistor akan dibahas dalam artikel yang lain.
- LDR (Light Depending Resistor), yaitu tipe resistor variabel yang nilai resistansinya akan berubah mengikuti cahaya yang diterima oleh LDR tersebut.
Jenis-jenis resistor tetap dan variable diatas akan dibahas lebih detil dalam artikel yang lain.
Menghitung Nilai Resistor
Nilai resistor dapat diketahui dengan kode warna dan kode huruf pada resistor. Resistor dengan nilai resistansi ditentukan dengan kode warna dapat ditemukan pada resistor tetap dengan kapasitas daya rendah, sedangkan nilai resistor yang ditentukan dengan kode huruf dapat ditemui pada resistor tetap daaya besar dan resistor variable.
Kode Warna Resistor
Cicin warna yang terdapat pada resistor terdiri dari 4 ring 5 dan 6 ring warna. Dari cicin warna yang terdapat dari suatu resistor tersebut memiliki arti dan nilai dimana nilai resistansi resistor dengan kode warna yaitu :
Maka cincin ke 1 dan ke 2 merupakan digit angka, dan cincin kode warna ke 3 merupakan faktor pengali kemudian cincin kode warnake 4 menunjukan nilai toleransi resistor.
Maka cincin ke 1, ke 2 dan ke 3 merupakan digit angka, dan cincin kode warna ke 4 merupakan faktor pengali kemudian cincin kode warna ke 5 menunjukan nilai toleransi resistor.
Resistor dengan 6 cicin warna pada prinsipnya sama dengan resistor dengan 5 cincin warna dalam menentukan nilai resistansinya. Cincin ke 6 menentukan coefisien temperatur yaitu temperatur maksimum yang diijinkan untuk resistor tersebut.
Kode Huruf Resistor
Resistor dengan kode huruf dapat kita baca nilai resistansinya dengan mudah karenanilia resistansi dituliskan secara langsung. Pad umumnya resistor yang dituliskan dengan kode huruf memiliki urutan penulisan kapasitas daya, nilai resistansi dan toleransi resistor. Kode huruf digunakan untuk penulisan nilai resistansi dan toleransi resistor.
Kode Huruf Untuk Nilai Resistansi :
- R, berarti x1 (Ohm)
- K, berarti x1000 (KOhm)
- M, berarti x 1000000 (MOhm)
Kode Huruf Untuk Nilai Toleransi :
- F, untuk toleransi 1%
- G, untuk toleransi 2%
- J, untuk toleransi 5%
- K, untuk toleransi 10%
- M, untuk toleransi 20%
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
![]() |
Konstruksi kapasitor |
Cara Kerja Kapasitor
Sifat Kapasitor
Jenis dan Simbol Kapasitor
Adalah jenis kapasitor tanpa polaritas, artinya pemasangan dibolak-balik tidak masalah. Kapasitor jenis ini umumnya memiliki nilai kapasintansi yang kecil antara pikofarad dan nanofarad. Contoh kapasitor non polar adalah: kapasitor keramik, mika, dan polyester.
Bipolar
Adalah jenis kapasitor yang memiliki polaritas positif dan negatif. Hati-hati saat pemasangan kapasitor jenis ini karena jika dipasang terbalik akan merusak kapasitor bahkan bisa menimbulkan ledakan. Contoh kapasitor bipolar adalah: Elektrolit kapasitor (ELKO), dan kapasitor tantalum.
Variable kapasitor
Kapasitor ini umumnya jenis nonpolar, biasa dipakai untuk penalaan radio frekuensi pada rangkaian oscilator, contoh kapasitor ini adalah: VARCO dan kapasitor trimer.
![]() | ||||
Simbol dan Jenis kapasitor |
Cara Membaca dan Menghitung Nilai Kapasitor berdasarkan Kode Angka dan Huruf-nya.
Satuan Kapasitansi Kapasitor adalah Farad, tetapi Farad merupakan satuan yang besar untuk sebuah Kapasitor yang umum dipakai oleh Peralatan Elektronik. Oleh Karena itu, Satuan-satuan yang merupakan turunan dari Farad menjadi pilihan utama produsen dalam memproduksi sebuah Kapasitor agar dapat digunakan oleh peralatan Elektronika. Satuan-satuan tersebut diantaranya adalah : Micro Farad (µF), Nano Farad (nF) dan Piko Farad (pF ).
Berikut ini adalah ukuran turunan Farad yang umum digunakan dalam menentukan Nilai Kapasitansi sebuah Kapasitor :
1 Farad = 1.000.000µF (mikro Farad)
1µF = 1.000nF (nano Farad)
1µF = 1.000.000pF (piko Farad)
1nF = 1.000pF (piko Farad)
Cara Membaca Nilai Kapasitor Elektrolit (ELCO)
Untuk Kapasitor Elektrolit atau ELCO, nilai Kapasitansinya telah tertera di label badannya dengan jelas. Jadi sangat mudah untuk menentukan nilainya. Contoh 100µF 16V, 470µF 10V, 1000µF 6.3V ataupun 3300µF 16V.
Cara Membaca Nilai Kapasitor Keramik, Kapasitor Kertas dan Kapasitor non-Polaritas lainnya
Untuk Kapasitor Keramik, Kapasitor Kertas, Kapasitor Mika, Kapasitor Polyester atau Kapasitor Non-Polaritas lainnya, pada umumnya dituliskan Kode Nilai dibadannya. Seperti 104J, 202M, 473K dan lain sebagainya. Maka kita perlu menghitungnya ke dalam nilai Kapasitansi Kapasitor yang sebenarnya.
Contoh untuk membaca Nilai Kode untuk Kapasitor Keramik diatas dengan Tulisan Kode 473Z. Cara menghitung Nilai Kapasitor berdasarkan kode tersebut adalah sebagai berikut :
Kode : 473Z
Nilai Kapasitor = 47 x 103
Nilai Kapasitor = 47 x 1000
Nilai Kapasitor = 47.000pF atau 47nF atau 0,047µF
Huruf dibelakang angka menandakan Toleransi dari Nilai Kapasitor tersebut, Berikut adalah daftar Nilai Toleransinya :
B = 0.10pF
C = 0.25pF
D = 0.5pF
E = 0.5%
F = 1%
G= 2%
H = 3%
J = 5%
K = 10%
M = 20%
Z = + 80% dan -20%
473Z = 47,000pF +80% dan -20% atau berkisar antara 37.600 pF ~ 84.600 pF.
Jika di badan badan Kapasitor hanya bertuliskan 2 angka, Contohnya 47J maka perhitungannya adalah sebagai berikut :
Kode : 47J
Nilai Kapasitor = 47 x 100
Nilai Kapasitor = 47 x 1
Nilai Kapasitor = 47pF
Jadi Nilai Kapasitor yang berkode 47J adalah 47 pF ±5% yaitu berkisar antara 44,65pF ~ 49,35pF
Jika di badan Kapasitor tertera 222K maka nilai Kapasitor tersebut adalah :
Kode : 222K
Nilai Kapasitor = 22 x 102
Nilai Kapasitor = 22 x 100
Nilai Kapasitor = 2200pF
Toleransinya adalah 5% :
Nilai Kapasitor = 2200 – 10% = 1980pF
Nilai Kapasitor = 2200 + 10% = 2420pF
Jadi Nilai Kapasitor dengan Kode 222K adalah berkisar antara 1.980 pF ~ 2.420 pF.
Rangkaian Seri-Paralel Kapasitor
Rangkaian kapasitor bisa dibuat secara seri atau paralel,sehingga dapat menghasilkan nilai kapasitansi baru yang tidak ada dipasaran.Untuk menghitung total kapasitansi rangkaian seri berlaku rumus:
Jenis dan Simbol Dioda
Seperti penjelasan diatas, Jenis dioda tergantung dari bahan material yang dipakai saat pembuatannya, dibawah ini adalah contoh gambar dan simbol dari jenis-jenis dioda:1. Dioda Silicon
Ie = Ic + Ib
Keterangan :
Ie = Arus Emitter
Ic = Arus Collector
Ib = Arus Basis
Keterangan :
Ie = Arus Emitter
Ic = Arus Collector
Catu daya merupakan suatu Rangkaian yang paling penting bagi sistem elektronika. Power supply atau catu daya adalah suatu alat atau perangkat elektronik yang berfungsi untuk merubah arus AC menjadi arus DC untuk memberi daya suatu perangkat keras lainnya. Sumber AC yaitu sumber tegangan bolak-balik, sedangkan sumber tegangan DC merupakan sumber tegangan searah. Power supply/unit catu daya secara efektif harus mengisolasi rangkaian internal dari jaringan utama, dan biasanya harus dilengkapi dengan pembatas arus otomatis atau pemutus bila terjadi beban lebih atau hubung singkat. Bila pada saat terjadinya kesalahan catu daya, tegangan keluaran DC meningkat di atas suatu nilai aman maksimum untuk rangkaian internal, maka daya secara otomatis harus diputuskan.
Simbol di proteus
- Sensor Soil Moisture
Transistor merupakan salah satu Komponen Elektronika Aktif yang paling sering digunakan dalam rangkaian Elektronika, baik rangkaian Elektronika yang paling sederhana maupun rangkaian Elektronika yang rumit dan kompleks. Transistor pada umumnya terbuat dari bahan semikonduktor seperti Germanium, Silikon, dan Gallium Arsenide.
Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.
1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.
2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.
Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor.
Spesifikasi :
- Bi-Polar Transistor
- DC Current Gain (hFE) is 800 maximum
- Continuous Collector current (IC) is 100mA
- Emitter Base Voltage (VBE) is > 0.6V
- Base Current(IB) is 5mA maximum
Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.
Karakteristik penguat ideal adalah:
- Gain sangat besar (AOL >>). Penguatan open loop adalah sangat besar karena feedback-nya tidak ada atau RF = tak terhingga, serta pada rentang frekuensi yang luas.
- Impedansi input sangat besar (Zi >>). Impedansi input adalah sangat besar sehingga arus input ke rangkaian dalam op-amp sangat kecil sehingga tegangan input sepenuhnya dapat dikuatkan.
- Impedansi output sangat kecil (Zo <<).
Konfigurasi PIN LM741:
Spesifikasi:
Respons karakteristik kurva I-O:
3) Sensor Sound
Sensor Suara adalah sensor yang memiliki cara kerja merubah besaran suara menjadi besaran listrik. Pada dasarnya prinsip kerja pada alat ini hampir mirip dengan cara kerja sensor sentuh pada perangkat seperti telepon genggam, laptop, dan notebook. Sensor ini bekerja berdasarkan besar kecilnya kekuatan gelombang suara yang mengenai membran sensor yang menyebabkan bergeraknya membran sensor yang memiliki kumparan kecil dibalik membran tersebut naik dan turun. Kecepatan gerak kumparan tersebut menentukan kuat lemahnya gelombang listrik yang dihasilkannya.
- Working voltage: DC 3.3-5V
- Dimensions: 45 x 17 x 9 mm
- Signal output indication
- Single channel signal output
- With the retaining bolt hole, convenient installation
- Outputs low level and the signal light when there is sound

4. Sensor Suhu LM35

- LM35, LM35A -> range pengukuran temperature -55ºC hingga +150ºC.
- LM35C, LM35CA -> range pengukuran temperature -40ºC hingga +110ºC.
- LM35D -> range pengukuran temperature 0ºC hingga +100ºC.
- Rentang suhu yang jauh, antara -55 sampai +150ºC
- Low self-heating, sebesar 0.08 ºC
- Beroperasi pada tegangan 4 sampai 30 V
- Tidak memerlukan pengkondisian sinyal
- Membutuhkan tegangan untuk beroperasi.

- Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.
- Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu25ºC
- Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
- Bekerja pada tegangan 4 sampai 30 volt. Memiliki arus rendah yaitu kurang dari 60 µA.
- Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
- Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA. Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.


Pinout:

Spesifikasi :


- Tegangan maksimum (DC): 150V
- Konsumsi arus maksimum: 100mW
- Tingkatan Resistansi/Tahanan : 10Ω sampai 4.100KΩ
- Puncak spektral: 540nm (ukuran gelombang cahaya)
- Waktu Respon Sensor : 20ms – 30ms Suhu operasi: -30° Celsius – 70° Celcius

Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Hampir semua perangkat elektronik yang portabel seperti Handphone, Laptop, Senter, ataupun Remote Control menggunakan Baterai sebagai sumber listriknya. Dengan adanya Baterai, kita tidak perlu menyambungkan kabel listrik untuk dapat mengaktifkan perangkat elektronik kita sehingga dapat dengan mudah dibawa kemana-mana. Dalam kehidupan kita sehari-hari, kita dapat menemui dua jenis Baterai yaitu Baterai yang hanya dapat dipakai sekali saja (Single Use) dan Baterai yang dapat di isi ulang (Rechargeable).
Dari grafik di atas, terlihat pada suhu operasional baterai yang lebih rendah, siklus hidup baterai lebih lama. Siklus hidup baterai juga tergantung dari DoD, artinya baterai yang dikosongkan hanya 50% dari kapasitasnya, berumur lebih lama jika dikosongkan hingga 80%, namun membuat sistem menjadi lebih mahal, karena membutuhkan kapasitas baterai lebih besar untuk mengakomodasi kebutuhan yang sama.
Jika pada suhu operasional lebih rendah, umur baterai lebih lama, namun ada efek negatif berkaitan dengan kapasitas baterai. Pada suhu yang lebih rendah, kapasitas baterai menjadi lebih rendah. Hal ini disebabkan karena pada suhu yang lebih tinggi, reaksi kimia yang terjadi pada baterai bergerak lebih aktif/cepat, sehingga kapasitas baterai cenderung lebih tinggi.
Terkadang, pada suhu yang lebih tinggi, kapasitas baterai justru dapat lebih besar dari angka nominalnya, meskipun pada suhu tinggi, elemen baterai terlalu aktif, juga berakibat buruk pada kesehatan baterai.
- Sususnlah setiap komponen yang diperlukan di aplikasi proteus.
- Sambungkan setiap rangkaian dengan kabel di aplikasi proteus.
- Jalankan simulasi rangkaian dengan menekan tombol play di aplikasi proteus.
1. Ketika suhu berada >35 derajat celcius
2. Ketika suhu berada <33 derajat celcius
1) Ketika suhu panas (>35o)
Misalnya sensor suhu lm 35 menunjukkan angka 37o :
Ketika berada pada suhu >34 derajat: arus pada sumber tegangan sebesar 9V masuk ke sensor LM35 sehingga arus akan mengalir menuju ke kaki non inverting op amp, 1° pada sensor lm35 sama dengan 0,01 V sehingga ketika suhu 35, tegangan yg terbaca dikaki non inverting op amp adalah 0,01x35 = 0,35V. Rangkaian yang dipakai adalah rangkaian detektor non inverting, dimana pada rangkaian detektor non inverting itu terdapat tegangan referensi yang dapat diatur menggunakan potensiometer dgn maksimal tegangan sebesar 1V. Cara mencari nilai tegangan referensi, persentase potensiometer yang dipakai dikali maksimal tegangan referensi, akan didapatkan (34%x1=0,34V). Kemudian, di rangkaian detektor non inverting, terdapat tegangan saturasi yang dimana ketika tegangan input >= tegangan referensi maka output yg dihasilkan adalah +Vsat, namun apabila tegangan input kecil dari tegangan referensi maka outputnya -Vsat. didapat dgn rumus (+-vsat= +-vs+-2) sehingga yang kita dapatkan pada rangkaian ini, krna tegangan input>= tegangan referensi, kita dapatkan +vsat sebesar 8V. Arus akan melewati R23 dimana pada R23 terdapat hambatan sebesar 10k, kemudian arus memasuki kaki basis transistor sehingga tegangan yg terbaca pada kaki base adalah vbe = vcc-Ib.rb (9-0,008x1000=kurang lebih sekitar 1V an). Karena tegangan pada kaki basis didapat 0,99 V, maka transistor akan aktif (transistor aktif ketika tegangan pada kaki basis sebesar >=0,7V). Arus dari sumber tegangan sebesar 9V mengalir menuju relay kemudian ke kaki kolektor lalu emitor dan ke ground. Karena transistor aktif, maka switch relay akan berpindah ke kiri, lalu baterai akan mengeluarkan arus menuju buzzer dan buzzer berbunyi.
Saat buzzer hidup, sound sensor akan merespon suara buzzer, sehingga sound sensor (berlogika 1) mengeluarkan tegangan output 5 volt, tegangan output diumpankan ke input non inverting op-amp, op-amp akan mengkalkulasikan tegangan output sensor, op-amp dirancang menggunakan penguat input non inverting sebesar 2x lipat yaitu diperoleh dari rumus (RF/RI+1).Vin) sehingga output op-amp 10 volt. Lalu arus diteruskan ke resistor R10, lalu tegangan dari resistor R10 diumpankan ke kaki base transistor BC547 Q2, sehingga transistor BC547 Q2 akan aktif. Pada transistor BC547 Q2 menggunakan self bias. Saat transistor BC547 Q2 aktif, maka tegangan dari power 9v mengeluarkan arus menuju relay, lalu kolector, lalu ke emitor dan ke ground. Sehingga batrai akan mengeluarkan tegangan dan mengaktifkan pendingin.
Misalnya sensor suhu lm 35 menunjukkan angka 32o :
Ketika berada pada suhu <33°, maka arus dari tegangan sumber sebesar 9v akan mengalir ke sensor lm35 sehingga arus akan mengalir menuju ke kaki non inverting op amp, 1° pada sensor lm35 sama dengan 0,01 V sehingga ketika suhu 32, tegangan yg terbaca dikaki non inverting op amp adalah 0,01x32 = 0,32 V. Rangkaian yang dipakai adalah rangkaian detektor non inverting, dimana pada rangkaian detektor non inverting itu terdapat tegangan referensi yang dapat diatur menggunakan potensiometer dgn maksimal tegangan sebesar 1V. Cara mencari nilai tegangan referensi, persentase potensiometer yang dipakai dikali maksimal tegangan referensi, akan didapatkan (31%x1=0,31V). Kemudian, di rangkaian detektor non inverting, terdapat tegangan saturasi yang dimana ketika tegangan input >= tegangan referensi maka output yg dihasilkan adalah +Vsat, namun apabila tegangan input kecil dari tegangan referensi maka outputnya -Vsat. didapat dgn rumus (+-vsat= +-vs+-2) sehingga yang kita dapatkan pada rangkaian ini, krna tegangan input>= tegangan referensi, kita dapatkan +vsat sebesar 8V. Arus akan melewati R4 dimana pada R4 terdapat hambatan sebesar 10k, kemudian arus memasuki kaki basis transistor sehingga tegangan yg terbaca pada kaki base adalah vbe = vcc-Ib.rb (9-0,008x1000=kurang lebih sekitar 1V an). Karena tegangan pada kaki basis didapat 0,99 V, maka transistor akan aktif (transistor aktif ketika tegangan pada kaki basis sebesar >=0,7V). Arus dari sumber tegangan sebesar 9V mengalir menuju relay kemudian ke kaki kolektor lalu emitor dan ke ground. Karena transistor aktif, maka relay akan berpindah ke kiri sehingga batrai sebesar 12V mengakibatkan lampu menyala. Ini ,menandakan suhu dalam keadaan dingin.
Selanjutnya ke sensor ldr, sensor ldr ini mendapat tegangan dari power supply sebesar 9v menuju resistor lalu ke kaki pertama sensor ldr kemudian ke kaki kedua sensor ldr dan menuju ground (Ini Ketika tidak ada cahaya yang ditangkap sensor). Ketika lampu nya menyala, cahayanya akan ditangkap oleh sensor ldr ini sehingga kaki pertama sensor ldr akan melanjutkan arus masuk ke kaki inverting op amp detector dimana sifatnya Vin(-)<Vref(+) maka outputnya sama dengan +Vcc (+Saturasi) sehingga output opamp sebesar 12 Volt. Karena terlalu besar, diumpankan ke resistor sehingga tegangan yang masuk ke kaki base transistor sebesar 0,88 volt. Sehingga tegangan sebesar 0,88 volt ini dapat membuat transistor on, dimana transistor sendiri dapat on pada tegangan 0,6-0,7 volt atau lebih. Ini mengakibatkan power suplay mengeluarkan tegangan menuju relay,lalu ke kolektor,lalu ke emitor dan juga ke ground. Karena adanya tegangan pada relay,maka relay on dan switch berpindah ke kiri, lalu baterai akan mengeluarkan tegangan menuju resistor dan heater sehingga heater(penghangat) aktif.
3. Ketika ada getaran
Ketika getaran terjadi, maka sensor vibration akan mendeteksi adanya getaran sehingga logicstate akan berlogika satu, sehingga sensor vibration mengeluarkan tegangan output sebesar 5V, tegangan keluaran dari sensor vibration akan menuju ke Op amp yang bertindak sebagai non inverting amplifier. Dimana terjadi penguatan sebanyak 2 kali Rumusnya adalah R1f dibagi Ri tambah 1 kemudian dikali Vinput sehingga didapatkan Voutnya 10 V. Kemudian tegangan akan mengalir melalui R4 dan menuju kekaki base transistor , dimana tipe transistornya adalah fixed bias. Karena tegangan di kaki base telah cukup maka transistor Q3 aktif. Karena transistor Q3 telah aktif maka ada arus dari power supply menuju relay terus ke kolektor menuju emitor dan ke ground. Karena relay aktif, maka switch relay bergesernya ke arah kiri sehingga loop pada relay akan tertutup. Dengan menutupnya rangkain loop relay maka ada arus yang mengalir sehingga buzzer berbunyi menandakan adanya getaran.
Tidak ada komentar:
Posting Komentar